Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides.

نویسندگان

  • Chad Husko
  • Matthias Wulf
  • Simon Lefrancois
  • Sylvain Combrié
  • Gaëlle Lehoucq
  • Alfredo De Rossi
  • Benjamin J Eggleton
  • L Kuipers
چکیده

Solitons are localized waves formed by a balance of focusing and defocusing effects. These nonlinear waves exist in diverse forms of matter yet exhibit similar properties including stability, periodic recurrence and particle-like trajectories. One important property is soliton fission, a process by which an energetic higher-order soliton breaks apart due to dispersive or nonlinear perturbations. Here we demonstrate through both experiment and theory that nonlinear photocarrier generation can induce soliton fission. Using near-field measurements, we directly observe the nonlinear spatial and temporal evolution of optical pulses in situ in a nanophotonic semiconductor waveguide. We develop an analytic formalism describing the free-carrier dispersion (FCD) perturbation and show the experiment exceeds the minimum threshold by an order of magnitude. We confirm these observations with a numerical nonlinear Schrödinger equation model. These results provide a fundamental explanation and physical scaling of optical pulse evolution in free-carrier media and could enable improved supercontinuum sources in gas based and integrated semiconductor waveguides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide.

We report on the first experimental observation of an optical analogue of an event horizon in integrated nanophotonic waveguides, through the reflection of a continuous wave on an intense pulse. The experiment is performed in a dispersion-engineered silicon-on-insulator waveguide. In this medium, solitons do not suffer from Raman induced self-frequency shift as in silica fibers, a feature that ...

متن کامل

Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic genera...

متن کامل

Soliton fission and supercontinuum generation in silicon waveguides.

We show through numerical simulations that silicon waveguides can be used to create a supercontinuum extending over 400 nm by launching femtosecond pulses as higher-order solitons. The physical process behind continuum generation is related to soliton fission, self-phase modulation, and generation of Cherenkov radiation. In contrast with optical fibers, stimulated Raman scattering plays little ...

متن کامل

Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides.

We study spatiotemporal dynamics of soliton-induced twooctave- broad supercontinuum generated by fs pulses in an array of coupled nonlinear waveguides. We show that after fission of the input pulse into several fundamental solitons, red and blue-shifted nonsolitonic radiation, as well as solitons with lower intensity, spread away in transverse direction, while the most intense spikes self-trap ...

متن کامل

Eigenvalue control and switching by fission of multisoliton bound states in planar waveguides.

We report the results of numerical studies of the fission of N-soliton bound states at the interface formed by a Kerr nonlinear medium and a linear dielectric in a planar waveguide. A variety of effects are shown to occur, with applications to all-optical eigenvalue soliton control.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016